metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{meso-Tetrakis[p-(heptyloxy)phenyl]porphyrinato}silver(II)

Jun-Xu Liao,^{a,b} Hong-Bin Zhao,^{a,c}* De-Liang Yang,^c Liang Chen^c and Bang-Ying Wang^c

^aEnvironmental Engineering, Dongguan University of Technology, Guangdong, 523808, People's Republic of China, ^bCleaner Production Center, Dongguan University of Technology, Guangdong, 523808, People's Republic of China, and ^cDepartment of Organic Chemistry, the College of Chemistry, Xiangtan University, Hunan, 411105, People's Republic of China Correspondence e-mail: zhhbhanlf@163.com

Received 25 July 2011; accepted 19 August 2011

Key indicators: single-crystal X-ray study; T = 185 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.091; data-to-parameter ratio = 15.0.

The title compound, $[Ag(C_{72}H_{84}N_4O_4)]$, crystallizes with the Ag^{II} cation on a centre of symmetry. The macrocyclic 24membered ring core is planar with a mean deviation of 0.0311 (15) Å and the four-coordinate Ag^{II} cation fits into its center, at 2.0814 (19) and 2.0872 (19) Å, from the surrounding pyrrole-N atoms, in agreement with what is found in related compounds. The *p*-heptyloxyphenyl groups are rotated 75.51 (5) and 84.45 (8)° with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle.

Related literature

For background information on metalloporphyrins and their derivatives, see: Fu et al. (2009); Jurow et al. (2010); Taniguchi & Lindsey (2010); Zenkevich et al. (2001). For related structures, see: Scheidt et al. (1986); Xu et al. (2007).

Experimental

Crystal data

$[Ag(C_{72}H_{84}N_4O_4)]$	V = 3140.0 (4) Å ³
$M_r = 1177.30$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 15.850 (1) Å	$\mu = 0.37 \text{ mm}^{-1}$
b = 19.1896 (12) Å	$T = 185 { m K}$
c = 10.3285 (7) Å	$0.24 \times 0.17 \times 0.10 \text{ mm}$
$\beta = 91.724 \ (1)^{\circ}$	

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.916, \ T_{\max} = 0.964$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 369 parameters $wR(F^2) = 0.091$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^-$ S = 1.02 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 5544 reflections

18310 measured reflections

 $R_{\rm int} = 0.035$

5544 independent reflections

4385 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2416).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, B., Yu, H.-C, Huang, J.-W., Zhao, P., Liu, J. & Ji, L.-N. (2009). J. Mol. Catal. A Chem. 298, 74-80.
- Jurow, M., Schuckman, A. E., Batteas, J. D. & Drain, C. M. (2010). Coord. Chem. Rev. 254, 2297-2310.
- Scheidt, W. R., Mondal, J. U., Eigenbrot, C. W., Adler, A., Radonvich, L. J. & Hoard, J. L. (1986). Inorg. Chem. 25, 795-799.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Taniguchi, M. & Lindsey, J. S. (2010). Tetrahedron, 66, 5549-5565.
- Xu, Y.-J., Yang, X.-X., Cao, H. & Zhao, H.-B. (2007). Acta Cryst. E63, m1437.
- Zenkevich, E. I., Willert, A., Bachilo, S. M., Rempel, U., Kilin, D. S., Shulga,
- A. M. & von Borczyskowski, C. (2001). Mater. Sci. Eng. C, 18, 99-111.

Acta Cryst. (2011). E67, m1316 [doi:10.1107/S160053681103385X]

{meso-Tetrakis[p-(heptyloxy)phenyl]porphyrinato}silver(II)

J.-X. Liao, H.-B. Zhao, D.-L. Yang, L. Chen and B.-Y. Wang

Comment

Porphyrins, metalloporphyrins, and their derivatives are applied in many fields, such as biomimetic catalysts (Fu *et al.*, 2009), molecular electronic components (Jurow *et al.*, 2010), artificial photosynthesis (Taniguchi *et al.*, 2010) or electron transfer and energy migration (Zenkevich *et al.*, 2001). In this paper, the structure of Silver(II)*meso*-tetrakis[*p*-(heptyloxy)phenyl]porphyrinate (I) is reported.

The compound crystallizes with the Ag^{II} cation in a centre of symmetry (Fig. 1). The macrocyclic 24-membered ring core is planar with a mean deviation of 0.0311 (15) Å and the four coordinate Ag^{II} ion fits into its center, at 2.0814 (19) and 2.0872 (19) Å, from the surrouding pyrrole N atoms, in agreement with what found in related compounds (Scheidt *et al.*, 1986; Xu *et al.*, 2007).

The *p*-heptyloxyphenyl groups are rotated at angles of 75.51 (5)° and 84.45 (8)° with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle.

Experimental

0.03mmol meso-tetrakis[p-(heptyloxy)phenyl] porphyrin and 0.06mmol AgNO₃ were dissolved in 20 ml chloroform, refluxed for 6 hours, and the solvent was removed by a rotary evaporator, the residue was purified by column chromatography with chloroform, then recrystallized from a methanol/chloroform solution, and a purple solid was obtained (yield=23%). Single crystals were obtained from recrystallization from a dichloromethane solution at room temperature.

Refinement

H atoms were placed in calculated positions (C—H = 0.95, 0.98 or 0.99 Å) and refined in riding mode, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and 1.2 for all other H atoms.

A Platon run (Spek, 2009) detects solvent accessible voids of 78 Å³, which indicate that the structure may contain disordered solvent molecules (dichloromethane). However, efforts to locate the solvent molecules failed because the residual electron density is small (the highest peak of residual density is 0.529 e Å⁻³).

Figures

Fig. 1. A view of (I), with the atom-labeling scheme and 50% probability displacement ellipsoids. Symmetry codes: (i) -x, -y, -z+2.

{meso-Tetrakis[p-(heptyloxy)phenyl]porphyrinato}silver(II)

F(000) = 1246
$D_{\rm x} = 1.245 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5112 reflections
$\theta = 2.2 - 24.8^{\circ}$
$\mu = 0.37 \text{ mm}^{-1}$
T = 185 K
Block, purple
$0.24\times0.17\times0.10~mm$

Data collection

Bruker APEX CCD diffractometer	5544 independent reflections
Radiation source: fine-focus sealed tube	4385 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -17 \rightarrow 18$
$T_{\min} = 0.916, T_{\max} = 0.964$	$k = -22 \rightarrow 19$
18310 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.091$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.7718P]$ where $P = (F_o^2 + 2F_c^2)/3$

5544 reflections	$(\Delta/\sigma)_{max} < 0.001$
369 parameters	$\Delta\rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.0000	0.0000	1.0000	0.02274 (9)
C1	-0.17114 (15)	0.03711 (13)	1.1183 (2)	0.0268 (6)
C2	-0.22273 (16)	0.09570 (13)	1.1505 (2)	0.0307 (6)
H2	-0.2766	0.0938	1.1884	0.037*
C3	-0.18104 (16)	0.15392 (14)	1.1173 (2)	0.0302 (6)
Н3	-0.2003	0.2004	1.1272	0.036*
C4	-0.10181 (15)	0.13291 (13)	1.0637 (2)	0.0267 (6)
C5	-0.03796 (16)	0.17749 (12)	1.0229 (2)	0.0242 (5)
C6	-0.05259 (15)	0.25455 (12)	1.0355 (2)	0.0254 (5)
C7	-0.10737 (17)	0.29051 (14)	0.9522 (2)	0.0347 (6)
H7	-0.1365	0.2661	0.8845	0.042*
C8	-0.12023 (17)	0.36174 (14)	0.9664 (2)	0.0353 (6)
H8	-0.1582	0.3854	0.9087	0.042*
C9	-0.07828 (16)	0.39834 (13)	1.0637 (2)	0.0284 (6)
C10	-0.02294 (18)	0.36346 (14)	1.1466 (2)	0.0361 (7)
H10	0.0069	0.3880	1.2134	0.043*
C11	-0.01107 (18)	0.29203 (13)	1.1314 (2)	0.0354 (6)
H11	0.0269	0.2684	1.1892	0.042*
C12	-0.04960 (18)	0.50778 (12)	1.1669 (3)	0.0341 (6)
H12A	0.0109	0.5097	1.1459	0.041*
H12B	-0.0545	0.4855	1.2528	0.041*
C13	-0.08601 (17)	0.58049 (13)	1.1696 (3)	0.0339 (6)
H13A	-0.0896	0.5991	1.0802	0.041*
H13B	-0.0476	0.6110	1.2214	0.041*
C14	-0.17338 (17)	0.58243 (13)	1.2270 (3)	0.0337 (6)
H14A	-0.2116	0.5524	1.1739	0.040*
H14B	-0.1696	0.5623	1.3153	0.040*
C15	-0.21219 (17)	0.65466 (14)	1.2351 (3)	0.0350 (6)
H15A	-0.2249	0.6720	1.1463	0.042*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15B	-0.1707	0.6868	1.2765	0.042*
C16	-0.29271 (18)	0.65544 (14)	1.3115 (3)	0.0383 (7)
H16A	-0.3327	0.6213	1.2724	0.046*
H16B	-0.2790	0.6399	1.4011	0.046*
C17	-0.3360 (2)	0.72544 (17)	1.3171 (3)	0.0521 (8)
H17A	-0.3525	0.7400	1.2280	0.062*
H17B	-0.2954	0.7603	1.3527	0.062*
C18	-0.4137 (2)	0.72520 (19)	1.3994 (4)	0.0679 (10)
H18A	-0.4538	0.6902	1.3659	0.102*
H18B	-0.4403	0.7713	1.3961	0.102*
H18C	-0.3973	0.7139	1.4892	0.102*
C19	0.04070 (16)	0.15704 (12)	0.9737 (2)	0.0240 (5)
C20	0.10418 (16)	0.20316 (13)	0.9264 (2)	0.0291 (6)
H20	0.1026	0.2526	0.9284	0.035*
C21	0.16623 (16)	0.16374 (13)	0.8789 (2)	0.0281 (6)
H21	0.2160	0.1804	0.8402	0.034*
C22	0.14361 (15)	0.09178 (13)	0.8972 (2)	0.0253 (6)
C23	0.19112 (15)	0.03383 (14)	0.8601 (2)	0.0264 (6)
C24	0.26926 (16)	0.04802 (13)	0.7844 (2)	0.0284 (6)
C25	0.26415 (17)	0.04737 (15)	0.6514 (3)	0.0379 (7)
H25	0.2115	0.0372	0.6092	0.045*
C26	0.33407 (17)	0.06126 (15)	0.5767 (3)	0.0397 (7)
H26	0.3292	0.0597	0.4849	0.048*
C27	0.41000 (17)	0.07728 (13)	0.6369 (3)	0.0326 (6)
C28	0.41643 (17)	0.07760 (16)	0.7708 (3)	0.0428 (7)
H28	0 4690	0.0880	0.8130	0.051*
C29	0 34655 (17)	0.06290 (15)	0.8436 (3)	0.0388(7)
H29	0.3519	0.0630	0.9354	0.047*
C30	0 47894 (19)	0.09010 (16)	0 4349 (3)	0.0432(7)
H30A	0.4315	0 1190	0 4008	0.052*
H30B	0.4693	0.0414	0.4062	0.052*
C31	0.56106 (19)	0.11666 (15)	0.3838 (3)	0.032
H31A	0.5638	0.1047	0.2907	0.056*
H31B	0.6084	0.0927	0.4298	0.056*
C32	0.57217 (18)	0.19524 (15)	0.3996 (3)	0.030
H32A	0.5192	0.2186	0.3707	0.052*
H32R	0.5817	0.2059	0.4927	0.052*
C33	0.64472 (18)	0.2057 0.22525(15)	0.3246(3)	0.032 0.0437 (7)
H33A	0.6986	0.22525 (15)	0.3608	0.0437 (7)
H33R	0.6390	0.2100	0.2331	0.052*
C34	0.0370	0.2100	0.2331	0.052
U34 H34A	0.0478 (2)	0.30437 (10)	0.3290 (3)	0.0500 (8)
H34R	0.5925	0.3228	0.2330	0.000*
C35	0.0373	0.31)2	0.4201 0.2470 (4)	0.000
UJJ H35A	0.7134 (2)	0.3200	0.1575	0.0509(9)
H35R	0.7070	0.3200	0.1375	0.000
1155D C36	0.7710 (2)	0.3130	0.2003	0.000
U26A	0./147(3)	0.41304 (18)	0.2490 (4)	0.126*
ПЭ0А 1124D	0.0008	0.4319	0.1067	0.120*
1130D	0./009	0.4323	0.1907	0.120**

H36C	0.7225	0.4317	0.3383	0.126*
N1	-0.09901 (12)	0.06134 (10)	1.06458 (18)	0.0258 (5)
N2	0.06710 (12)	0.08969 (10)	0.95571 (18)	0.0236 (4)
01	-0.09551 (11)	0.46820 (9)	1.07045 (16)	0.0327 (4)
O2	0.48278 (11)	0.09324 (10)	0.57368 (18)	0.0400 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.02106 (15)	0.01858 (15)	0.02898 (14)	0.00032 (12)	0.00751 (10)	0.00036 (11)
C1	0.0219 (14)	0.0264 (15)	0.0324 (13)	0.0016 (11)	0.0069 (11)	-0.0005 (11)
C2	0.0256 (14)	0.0273 (15)	0.0399 (14)	0.0000 (12)	0.0114 (11)	-0.0009 (11)
C3	0.0270 (14)	0.0256 (14)	0.0386 (14)	0.0045 (12)	0.0089 (11)	-0.0017 (11)
C4	0.0245 (14)	0.0254 (15)	0.0303 (13)	0.0028 (11)	0.0025 (10)	-0.0006 (10)
C5	0.0265 (14)	0.0195 (13)	0.0267 (12)	0.0012 (11)	0.0036 (10)	-0.0009 (10)
C6	0.0243 (13)	0.0210 (13)	0.0313 (13)	0.0003 (11)	0.0064 (10)	0.0012 (10)
C7	0.0372 (16)	0.0267 (15)	0.0399 (14)	0.0015 (12)	-0.0061 (12)	-0.0058 (12)
C8	0.0391 (16)	0.0251 (15)	0.0411 (15)	0.0078 (13)	-0.0090 (12)	0.0004 (12)
С9	0.0327 (15)	0.0202 (13)	0.0326 (13)	0.0030 (11)	0.0063 (11)	0.0010 (11)
C10	0.0457 (17)	0.0268 (15)	0.0355 (14)	0.0032 (13)	-0.0059 (12)	-0.0079 (11)
C11	0.0447 (17)	0.0249 (15)	0.0361 (14)	0.0097 (13)	-0.0060 (12)	-0.0010 (11)
C12	0.0394 (16)	0.0235 (15)	0.0394 (14)	0.0003 (12)	0.0022 (12)	-0.0067 (11)
C13	0.0379 (16)	0.0238 (15)	0.0404 (15)	0.0003 (12)	0.0055 (12)	-0.0036 (11)
C14	0.0385 (16)	0.0241 (15)	0.0387 (14)	-0.0030 (12)	0.0059 (12)	-0.0013 (11)
C15	0.0376 (17)	0.0255 (15)	0.0423 (15)	-0.0006 (13)	0.0102 (12)	-0.0029 (12)
C16	0.0392 (17)	0.0338 (16)	0.0422 (15)	-0.0006 (13)	0.0069 (13)	-0.0012 (13)
C17	0.046 (2)	0.0436 (19)	0.067 (2)	0.0084 (16)	0.0201 (16)	-0.0013 (16)
C18	0.067 (3)	0.059 (2)	0.080 (2)	0.015 (2)	0.036 (2)	0.0017 (19)
C19	0.0279 (14)	0.0190 (13)	0.0254 (12)	-0.0008 (11)	0.0030 (10)	-0.0001 (10)
C20	0.0293 (15)	0.0223 (14)	0.0360 (13)	-0.0010 (12)	0.0052 (11)	0.0014 (11)
C21	0.0238 (14)	0.0250 (14)	0.0359 (14)	-0.0045 (11)	0.0075 (11)	0.0039 (11)
C22	0.0239 (14)	0.0229 (14)	0.0294 (12)	-0.0014 (11)	0.0038 (10)	0.0006 (10)
C23	0.0212 (14)	0.0285 (15)	0.0296 (13)	-0.0007 (12)	0.0049 (10)	-0.0015 (11)
C24	0.0266 (14)	0.0205 (14)	0.0387 (14)	-0.0001 (11)	0.0092 (11)	-0.0015 (11)
C25	0.0267 (15)	0.0478 (18)	0.0393 (15)	-0.0075 (13)	0.0039 (12)	0.0008 (13)
C26	0.0344 (16)	0.0507 (19)	0.0345 (14)	-0.0066 (14)	0.0078 (12)	0.0040 (13)
C27	0.0293 (15)	0.0251 (15)	0.0441 (15)	-0.0008 (12)	0.0146 (12)	-0.0003 (12)
C28	0.0251 (15)	0.055 (2)	0.0480 (16)	-0.0101 (14)	0.0058 (12)	-0.0047 (14)
C29	0.0316 (16)	0.0503 (19)	0.0350 (14)	-0.0076 (14)	0.0072 (12)	-0.0063 (13)
C30	0.0437 (18)	0.0407 (18)	0.0463 (16)	-0.0043 (15)	0.0211 (14)	0.0019 (14)
C31	0.0451 (19)	0.0381 (18)	0.0581 (18)	0.0015 (15)	0.0265 (15)	0.0034 (15)
C32	0.0376 (17)	0.0376 (17)	0.0551 (17)	0.0015 (14)	0.0189 (14)	0.0007 (14)
C33	0.0329 (16)	0.0355 (17)	0.0637 (19)	0.0010 (14)	0.0175 (14)	0.0060 (14)
C34	0.047 (2)	0.0381 (18)	0.066 (2)	-0.0011 (15)	0.0148 (16)	0.0048 (15)
C35	0.046 (2)	0.0369 (19)	0.088 (2)	-0.0063 (16)	0.0157 (18)	0.0155 (17)
C36	0.083 (3)	0.040 (2)	0.130 (4)	-0.014 (2)	0.035 (3)	0.011 (2)
N1	0.0238 (11)	0.0196 (11)	0.0346 (11)	0.0014 (9)	0.0092 (9)	0.0005 (9)
N2	0.0214 (11)	0.0199 (11)	0.0300 (10)	0.0016 (9)	0.0071 (8)	0.0000 (8)

O1 O2	0.0418 (12) 0.0299 (11)	0.0206 (9) 0.0412 (12)	0.0355 (10) 0.0499 (11)	0.0054 (8) -0.0050 (9)	-0.0016 (8) 0.0179 (9)	-0.0037 (8) 0.0035 (9)
Geometric parameters (Å, °)						
Ag1—N2		2.0814 (19)	C18—	-H18B	0.98	800
Ag1—N2 ⁱ		2.0815 (19)	C18—	-H18C	0.98	800
Ag1_N1 ⁱ		2.0871 (19)	C19—	-N2	1 37	73 (3)
Ag1—N1		2.0872 (19)	C19—	-C20	1 43	6 (3)
C1—N1		1.367 (3)	C20—	-C21	1.34	15 (3)
$C1-C23^{i}$		1 417 (4)	C20—	-H20	0.95	500
C1 - C2		1 435 (3)	C21-	-C22	1 44	1 (3)
C2-C3		1 348 (3)	C21	-H21	0.95	500
C2—H2		0.9500	C22—	-N2	1.37	/1 (3)
C3—C4		1.445 (3)	C22—	-C23	1.40	03 (3)
С3—Н3		0.9500	C23—	-C1 ⁱ	1.41	7 (4)
C4—N1		1.374 (3)	C23—	-C24	1.50	9(3)
C4—C5		1.400 (3)	C24—	-C25	1.37	/3 (3)
C5—C19		1.416 (3)	C24—	-C29	1.38	32 (4)
С5—С6		1.503 (3)	C25—	-C26	1.39	95 (3)
C6—C11		1.376 (3)	C25—	-H25	0.95	500
С6—С7		1.387 (3)	C26—	-C27	1.37	2 (4)
С7—С8		1.390 (4)	C26—	-H26	0.95	500
С7—Н7		0.9500	C27—	-02	1.37	77 (3)
С8—С9		1.380 (3)	C27—	-C28	1.38	34 (4)
C8—H8		0.9500	C28—	-C29	1.38	36 (4)
С9—О1		1.370 (3)	C28—	-H28	0.95	500
C9—C10		1.380 (3)	C29—	-H29	0.95	500
C10-C11		1.393 (4)	C30—	-02	1.43	35 (3)
C10—H10		0.9500	C30—	-C31	1.50	08 (4)
C11—H11		0.9500	C30—	-H30A	0.99	000
C12—O1		1.434 (3)	C30—	-H30B	0.99	000
C12—C13		1.510 (3)	C31—	-C32	1.52	26 (4)
C12—H12A		0.9900	C31—	-H31A	0.99	000
C12—H12B		0.9900	C31—	-H31B	0.99	200
C13—C14		1.523 (4)	C32—	-C33	1.51	.9 (4)
C13—H13A		0.9900	C32—	-H32A	0.99	200
C13—H13B		0.9900	C32—	-H32B	0.99	200 20 (4)
C14—C15		1.520 (3)	C33—	-C34	1.52	20 (4)
C14—H14A		0.9900	C33—	-ПЭЭА Цээр	0.99	000
C14—III4D		0.9900	C34	-1155B 	1.51	0(4)
C15—H15A		0.9900	C34-	-C33 -H34A	0.00	0(4)
C15—H15R		0.9900	C34—	-H34B	0.95	000
C16—C17		1 510 (4)	C35—	-C36	1 51	0 (4)
C16—H16A		0.9900	C35—	-H35A	0.99	000
C16—H16B		0.9900	C35—	-H35B	0.99	000
C17—C18		1.518 (4)	C36—	-H36A	0.98	800

С17—Н17А	0.9900	С36—Н36В	0.9800
C17—H17B	0.9900	С36—Н36С	0.9800
C18—H18A	0.9800		
N2—Ag1—N2 ⁱ	180.0	N2-C19-C20	108.3 (2)
N2—Ag1—N1 ⁱ	90.12 (7)	C5-C19-C20	125.8 (2)
N2 ⁱ —Ag1—N1 ⁱ	89.88 (7)	C21—C20—C19	107.8 (2)
N2—Ag1—N1	89.88 (7)	С21—С20—Н20	126.1
N2 ⁱ —Ag1—N1	90.12 (7)	С19—С20—Н20	126.1
N1 ⁱ —Ag1—N1	180.00 (7)	C20—C21—C22	107.6 (2)
N1—C1—C23 ⁱ	125.8 (2)	C20—C21—H21	126.2
N1—C1—C2	108.5 (2)	C22—C21—H21	126.2
C23 ⁱ —C1—C2	125.8 (2)	N2—C22—C23	125.9 (2)
C3—C2—C1	107.7 (2)	N2—C22—C21	108.2 (2)
С3—С2—Н2	126.2	C23—C22—C21	125.9 (2)
C1—C2—H2	126.2	C22—C23—C1 ⁱ	126.5 (2)
C2—C3—C4	107.7 (2)	C22—C23—C24	117.0 (2)
С2—С3—Н3	126.1	C1 ⁱ —C23—C24	116.5 (2)
С4—С3—Н3	126.1	C25—C24—C29	118.0 (2)
N1—C4—C5	126.1 (2)	C25—C24—C23	119.5 (2)
N1—C4—C3	107.7 (2)	C29—C24—C23	122.6 (2)
C5—C4—C3	126.1 (2)	C24—C25—C26	121.8 (3)
C4—C5—C19	126.2 (2)	С24—С25—Н25	119.1
C4—C5—C6	117.4 (2)	C26—C25—H25	119.1
C19—C5—C6	116.3 (2)	C27—C26—C25	119.5 (2)
C11—C6—C7	117.6 (2)	С27—С26—Н26	120.2
C11—C6—C5	120.3 (2)	С25—С26—Н26	120.2
C7—C6—C5	122.1 (2)	O2—C27—C26	124.8 (2)
C6—C7—C8	121.0 (2)	O2—C27—C28	115.8 (2)
С6—С7—Н7	119.5	C26—C27—C28	119.4 (2)
С8—С7—Н7	119.5	C27—C28—C29	120.3 (3)
C9—C8—C7	120.5 (2)	С27—С28—Н28	119.8
С9—С8—Н8	119.7	C29—C28—H28	119.8
С7—С8—Н8	119.7	C28—C29—C24	120.9 (2)
O1—C9—C8	116.3 (2)	С28—С29—Н29	119.5
O1—C9—C10	124.5 (2)	С24—С29—Н29	119.5
C8—C9—C10	119.2 (2)	O2—C30—C31	108.9 (2)
C9—C10—C11	119.5 (2)	O2—C30—H30A	109.9
С9—С10—Н10	120.2	С31—С30—Н30А	109.9
C11-C10-H10	120.2	O2—C30—H30B	109.9
C6—C11—C10	122.1 (2)	С31—С30—Н30В	109.9
C6—C11—H11	118.9	H30A—C30—H30B	108.3
C10-C11-H11	118.9	C30—C31—C32	113.2 (2)
O1—C12—C13	108.4 (2)	C30—C31—H31A	108.9
O1—C12—H12A	110.0	С32—С31—Н31А	108.9
C13—C12—H12A	110.0	С30—С31—Н31В	108.9
O1—C12—H12B	110.0	С32—С31—Н31В	108.9
C13—C12—H12B	110.0	H31A—C31—H31B	107.7

H12A—C12—H12B	108.4	C33—C32—C31	114.0 (2)
C12—C13—C14	112.5 (2)	C33—C32—H32A	108.8
С12—С13—Н13А	109.1	C31—C32—H32A	108.8
С14—С13—Н13А	109.1	С33—С32—Н32В	108.8
С12—С13—Н13В	109.1	C31—C32—H32B	108.8
С14—С13—Н13В	109.1	H32A—C32—H32B	107.7
H13A—C13—H13B	107.8	C34—C33—C32	112.8 (2)
C15—C14—C13	114.7 (2)	С34—С33—Н33А	109.0
C15-C14-H14A	108.6	С32—С33—Н33А	109.0
C13—C14—H14A	108.6	С34—С33—Н33В	109.0
C15—C14—H14B	108.6	С32—С33—Н33В	109.0
C13—C14—H14B	108.6	H33A—C33—H33B	107.8
H14A—C14—H14B	107.6	C35—C34—C33	114.3 (3)
C14—C15—C16	112.6 (2)	C35—C34—H34A	108.7
C14—C15—H15A	109.1	C33—C34—H34A	108.7
С16—С15—Н15А	109.1	C35—C34—H34B	108.7
C14—C15—H15B	109.1	C33—C34—H34B	108.7
C16—C15—H15B	109.1	H34A—C34—H34B	107.6
H15A—C15—H15B	107.8	C34—C35—C36	113.5 (3)
C17—C16—C15	114.7 (2)	С34—С35—Н35А	108.9
C17—C16—H16A	108.6	С36—С35—Н35А	108.9
C15-C16-H16A	108.6	С34—С35—Н35В	108.9
C17—C16—H16B	108.6	С36—С35—Н35В	108.9
C15—C16—H16B	108.6	H35A—C35—H35B	107.7
H16A—C16—H16B	107.6	С35—С36—Н36А	109.5
C16—C17—C18	113.3 (3)	С35—С36—Н36В	109.5
С16—С17—Н17А	108.9	H36A—C36—H36B	109.5
С18—С17—Н17А	108.9	С35—С36—Н36С	109.5
С16—С17—Н17В	108.9	H36A—C36—H36C	109.5
C18—C17—H17B	108.9	H36B—C36—H36C	109.5
H17A—C17—H17B	107.7	C1—N1—C4	108.4 (2)
C17—C18—H18A	109.5	C1—N1—Ag1	125.72 (17)
C17—C18—H18B	109.5	C4—N1—Ag1	125.88 (16)
H18A—C18—H18B	109.5	C19—N2—C22	108.01 (19)
C17—C18—H18C	109.5	C19—N2—Ag1	126.08 (15)
H18A—C18—H18C	109.5	C22—N2—Ag1	125.83 (16)
H18B—C18—H18C	109.5	C9—O1—C12	117.12 (19)
N2—C19—C5	125.8 (2)	C27—O2—C30	117.0 (2)
Symmetry codes: (i) $-x$, $-y$, $-z+2$.			

Fig. 1